最新网址:sk.3qxsw.com

爱因斯坦56关于布朗运动的理论第2部分

第2部分题为《应用第1部分中所推得方程的实例》,在这一部分,爱因斯坦将第一部分最后导出的方程4应用到了三个物理场景,简略的讨论了下方程4的应用。

方程4的第一个应用场景就是第1部分提到的物理体系状态变数P1,P2,…,Pn之一的原子坐标问题,也就是布朗运动中粒子的移动距离问题。爱因斯坦设定一个物体的重心能够沿着坐标系的X轴运动,而且这个物体被一种气体包围着(注:布朗运动的物理学假定模型,物体就是布朗运动中的花粉,这里的气体则是布朗运动中的液体),并且达到了热平衡和机械平衡。

按照分子理论,由于分子碰撞力不均匀,这个物体会以一种不规则的方式沿着直线作向后和向前运动,从而直线上没有一个点是特殊的,即几率均等,而物体重心的横坐标x就是上文探讨的物理体系参数α的一种。

接着,自然而然的,爱因斯坦的讨论就进入了第二个物理体系,在此处爱因斯坦设作用于第二个物理体系的势Φ(α)的力为K=-M·χ:

“那么,按照分子理论,这个物体的重心又会进行一种并不远离χ=0这个点的不规则运动;可是按照经典热力学,它却必须静止在点χ=0上。”

将方程4引入此处的设定物理场景,则在任意选定的时刻参数物体坐标χ处在χ和χ+dχ之间的几率dW为方程5:

dW=A′e-(NM·x2/2)/(RT)dx

此处由于力为K=-M·χ,则方程4中的势Φ(α)为M·χ2/2,不严格的考虑此处可以参照重力和重力势能的关系。

由方程5可以求出物体重心(即布朗运动中的花粉)与点χ=0之间的平均距离为公式6:

√`x2=√[òx2A′e-(NM·x2/2)/(RT)dx]/√[òA′e-(NM·x2/2)/(RT)dx]=√[(RT)/(NM)]。

(注:公式6中间第二项少了开方号。)

根据公式6可以看出,为了使物体重心(即布朗运动中的花粉)与点χ=0之间的平均距离√`x2能够大到被观测到程度,力K=-M·χ中的参数M不能过大,爱因斯坦在论文中对此进行了一定的文字阐述:

“为了使√`x2大到足以能够观测到,确立这个物体的平衡位置的力(注:即力K=-M·χ,M在公式6的分母上,M越大,√`x2越小)必须非常小。如果我们设观测的下限为√`x2=10-4cm;那么,对于T=300,我们就得到M大约为5×10-6。为了使这个物体所进行的振动在显微镜下可以观测,那么当伸长1cm时,作用在该物体上的力不可超过5/107dya(1dya=10-5N)。”

方程4的第二个应用场景是辐射密度公式,这个公式就是光量子论文《关于光的产生和转化的一个试探性的观点》第一部分《关于“黑体辐射”理论面临的一个困难》中的公式,即本文《爱因斯坦34》中的公式3: rn=(8πn2RT)/(NL3),光量子论文中的具体叙述如下:

[论文正文分为九个部分,第一部分题为《关于“黑体辐射”理论面临的一个困难》,以麦克斯韦理论和电子论为依据,设定在一个由完全反射壁围住的空间中,有一定数目的气体分子和电子,还假设有一定数目的电子被某些力束缚在这空间中一些相距很远的点上,称为振子:“我们称这些束缚在空间点上的电子为振子;它们发射一定周期的电磁波,也吸收同样周期的电磁波。”

以上述设定的场景为分析对象,爱因斯坦根据气体分子运动理论得出的动态平衡条件(一个电子振子的平均动能必须等于一个气体分子前进运动的平均动能)为依据导出了线性(分)振动的能量的平均值`E=RT/N,此为公式1。

其中R是绝对气体常数,N是每摩尔的实际分子数,而T是热力学温度。



本章未完 点击下一页继续阅读